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Not this ❌ This ✅
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Crates Selection

● Rust Sec Database
○ Critical (20 crates)
○ High (10 crates)

● Safe (10 crates)
○ Identify false 

positives
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Miri: Interpreter for Rust Mid-level Representation
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Source code AST
Abstract Syntax Tree

HIR
High-level intermediate 

Representation

Parse Simplify

Machine Code
MIR

Mid-level intermediate 
Representation

LLVM
Low--level intermediate 

Representation

Translate

Lower

Magic

Execution

CPUMiri

Reference: https://solson.me/miri-slides.pdf

https://solson.me/miri-slides.pdf


Rudra
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Package Parsing Analysis Codegen

Rust Compiler

Type Checking

Rudra

Dataflow

Precision Filter (p = high/med/low)

HIR - Code Structure

Unsafe blocks

MIR - Code Semantics

Unsafe Dataflow 
Checker

Send/Sync Variance 
Checker

Checks unsafe data handling Checks data types usage  across threads

lib/bin

Reports

Reports



Cargo-Scan
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User 
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Analysis 
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Effect 
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Call-graph with effects
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Phase

Audit 
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Big Table
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● List of crates
● Tools results analysis 
● First sheet -> Rust analyzers



Let’s take a poll
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Limitations 
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Data appropriation

Rudra and Rust Version Mismatch
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Solution?
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Solution



Execution Time 
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Execution Time - Deeper Dive
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Memory Consumption
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Memory Consumption - Deeper Dive
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Discussion
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Thank You 
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Do not trust any code you download from 
internet (including LLMs)



Poll Result
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Motivation

● Rust
● Why Rust?
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5-Levels of Research Project

● Research area: PL
● Research subarea: Software security, Software reliability
● Research topic: Security in Rust Ecosystem
● Research problem: Are Rust libraries a threat for Rust codes security and 

robustness
● Research solution: Evaluate the proficiency of Rust analyzers
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Motivation

● Rust
● Code written in Rust guarantees:

○ Runtime performance of traditional system languages like C/C++
○ Memory Safety 

■ No Dangling Pointers
■ No Garbage Collector
■ No Use after free or out of bounds

○ Type Safety
● Rust allows certain operations using “unsafe” keyword
● Rust compiler cannot guarantee safety in “unsafe” blocks
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