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Crates Selection

e Rust Sec Database
o Critical (20 crates)

o High (10 crates)
e Safe (10 crates) A vulnerability database for the Rust
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ecosystem
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Miri: Interpreter for Rust Mid-level Representation

Parse Simplify HIR

Source code —p AST — P High-level intermediate
Abstract Syntax Tree Representation
Lower
MIR Translate LLVM Magic
Mid-level intermediate P> Low-level intermediate » Machine Code
Representation Representation

Execution

Reference:; https://solson.me/miri-slides.pdf

CPU



https://solson.me/miri-slides.pdf

Rudra Rust Compiler

Package @——> Parsing - Type Checking » Analysis - Codegen

|
Rudra .
HIR - Code Structure MIR - Code Semantics lib/bin
Unsafe blocks -— Dataflow
Reports
Checks unsafe data handling Checks data types usage across threads
Unsafe Dataflow Send/Sync Variance
Checker Checker
Reports

Precision Filter (p = high/med/low)
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Cargo-Scan

User
JTTTTTTTmTTme e Call-graph with effects
/ User /
/ configurations
l’ __________________
Analysis Interactive Auditing ; Audit
Phase > Phase Report
Source
code
Effect
Model
Effect Type v  Effects
Unsafe Effects FFICall, FFIDecl, StaticExt, StaticMut, UnsafeCall, UnionField, RawPointer
System Effects std::fs, std::io, std::os, std::ffi, std::net, std::env, std::arch, std::path, std::mem, std::simd,
(SinkCall) std::panic, std::process, std::backtrace, std::intrinsics, libc, winapi
High-order Effects  FnPtrCreation, ClosureCreation
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Big Table

e List of crates
e Tools results analysis
e First sheet -> Rust analyzers

UCDAVIS 9



Let's take a poll
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Limitations

Tool v Limitation v Detall v
Miri API Support No support for hardware APIs, filesystems, FFI, network

Warnings Shows some vulnerabilities as warnings
Rudra Compiler Version Uses rustc 1.58.0, not supported by many crates

Parsing Errors Fails to parse Cargo.toml for most crates (does not support “*")
Cargo-Scan False Positive Outputs all side effects, so lot's of false positives

Macros Does not support Macros.
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Data appropriation

Rudra and Rust Version Mismatch

2024-06-03 06:38:28.467686 |INFO | [rudra-progress] Running cargo rudra
2024-06-03 06:38:34.266699 |INFO | [rudra-progress] Running rudra for target lib:1lz4-sys

package “cc v1.0.98° cannot be built because it requires rustc 1.63 or newer, while the currently active rustc version is 1.58.0-nightly
2024-06-03 06:38:43.235907 |ERROR| [rudra-progress] Finished with non-zero exit code

Solution?
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Data appropriation

Rudra and Rust Version Mismatch

2024-06-03 06:38:28.467686 |INFO | [rudra—-progress] Running cargo rudra
2024-06-03 06:38:34.266699 |INFO | [rudra-progress] Running rudra for target lib:1z4-sys

: package "cc v1.0.98° cannot be built because it requires rustc 1.63 or newer, while the currently active rustc version is 1.58.0-nightly
2024-06-03 06:38:43.235907 |ERROR| [rudra-progress] Finished with non-zero exit code

Solution

2024-06-03 06:39:54.568213 |INFO | [rudra-progress] Running cargo rudra

2024-06-03 06:39:59.702995 |INFO | [rudra-progress] Running rudra for target lib:1lz4-sys

warning: use of deprecated type alias “gcc::Config : gcc::Config has been renamed to gcc::Build
build.rs:6:29

let mut compiler = gcc::Config::new();

AAAAAA

note: ‘#[warn(deprecated)]’ on by default

warning: use of deprecated associated function “gcc::Build::new : crate has been renamed to “cc’, the “gcc’ name is not maintained
build.rs:6:37

let mut compiler = gcc::Config::new();

PV VN
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Execution Time

Average Time Comparison by Tool
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Execution Time - Deeper Dive

Time Comparison by Crate and Tool
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Memory Consumption

Average Memory Comparison by Tool
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Memory Consumption - Deeper Dive

Memory Comparison by Crate and Tool
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Discussion

Leads to

Vulnerability
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Thank You

Do not trust any code you download from
internet (including LLMs)
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Poll Result
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¥ 5 Level of the Project

Motivation

Crates & Tool Selection

Comparison of Tools

O U ﬂ | ﬂ e Limitations

Some Problems and Solutions

Runtime and Memory Consumption Analysis
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Motivation

High+, impacting stable
([ Ru St Security-related assert

e Why Rust?

Other Use-after-free

Other memory unsafety
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5-Levels of Research Project

Research area: PL

Research subarea: Software security, Software reliability

Research topic: Security in Rust Ecosystem

Research problem: Are Rust libraries a threat for Rust codes security and
robustness

e Research solution: Evaluate the proficiency of Rust analyzers
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Motivation

e Rust

e Code written in Rust guarantees:
o Runtime performance of traditional system languages like C/C++
o Memory Safety
m  No Dangling Pointers
m  No Garbage Collector
m No Use after free or out of bounds
o Type Safety

e Rust allows certain operations using “unsafe” keyword
e Rust compiler cannot guarantee safety in “unsafe” blocks
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Rust Compiler

Package @——> Parsing - Type Checking » Analysis - Codegen

I
Rudra .
HIR - Code Structure MIR - Code Semantics lib/bin
Unsafe blocks «— Dataflow
Reports
Checks unsafe data handling Checks data types usage across threads
Unsafe Dataflow Send/Sync Variance
Checker Checker
Reports

Precision Filter (p = high/med/low)



