In Rust We Trust?

A Closer Look to the Safety of Rust
Crates

Final Project of ECS 289C
Spring 2024

UCDAVIS

Motivation
Crates & Tool Selection

Comparison of Tools

Limitations

Outline

Some Problems and Solutions

Runtime and Memory Consumption Analysis

Discussion

UCDAVIS 2

Motivation

e Rust?

Not this D€ This

UCDAVIS 3

< Back to News

BLASTPASS
NSO Group iPhone Zero-Click, Zero-Day Exploit

M Otivation Captured in the Wild

September 7,2023

News

[EZEN NewsSiog Videos Podoasis | Pross Reeases | Spocches | Testimony Phoios Apps

| @ Apple has just issued an update for Apple products including iPhones, iPads, Mac computers, and Apple

November 2, 2018 Ewitter EdFacebook wEmail
The Morris Worm
30 Years Since First Major Attack CTHE WHITE HOUSE m Administration Priorities The Record Briefing Room Espaiol
HI |
DC-based
exploited
FEBRUARY 26, 2024 'ware.

Press Release: Future Software Should
Be Memory Safe

Ol » ONCD » BRIEFING ROOM » PRESS RELEASE

views, and insight from the ESET security comm

FEATURED ~ TOPICS

enable | Plugins
SQL Slammer had brought the

otable worm.
DETECTIONS
Leaders in Industry Support White House Call to Address Root Cause of
Many of the Worst Cyber Attacks
Information
Synopsis Plugin Details h . . "
On Saturday 25 January 2003, the internet was hit by a rapacious computer worm now known as
‘The version of i0S running on the mobile device is affected by multiple vulnerabilities.
Descriptio SQL Slammer. Spreading like wildfire over the internet via a bug in a version of Microsoft SQL, it is
scription &
believed to have infected over 75,000 machines within a matter of minutes. Globally, over 250,000

The version of {08 running on the mobile device is prior to 8.3.5. It i, therefore, affected by multiple.

computers were thought to have been affected.

Vulnerabiliti

application,

- Aremot

UCDAVIS

Crates Selection

e Rust Sec Database
o Critical (20 crates)

o High (10 crates)
e Safe (10 crates) A vulnerability database for the Rust

©) RUSTSEG
\\/ The Rust Sec‘urity Advi!)ry Da%abag

Abou i Report Vulnerabilities

ecosystem

o Identify false
positives

UCDAVIS 5

Miri: Interpreter for Rust Mid-level Representation

Parse Simplify HIR

Source code —p AST — P High-level intermediate
Abstract Syntax Tree Representation
Lower
MIR Translate LLVM Magic
Mid-level intermediate P> Low-level intermediate » Machine Code
Representation Representation

Execution

Reference:; https://solson.me/miri-slides.pdf

CPU

https://solson.me/miri-slides.pdf

Rudra Rust Compiler

Package @——> Parsing - Type Checking » Analysis - Codegen

|
Rudra .
HIR - Code Structure MIR - Code Semantics lib/bin
Unsafe blocks -— Dataflow
Reports
Checks unsafe data handling Checks data types usage across threads
Unsafe Dataflow Send/Sync Variance
Checker Checker
Reports

Precision Filter (p = high/med/low)

UCDAVIS 7

Cargo-Scan

User
JTTTTTTTmTTme e Call-graph with effects
/ User /
/ configurations
l’ __________________
Analysis Interactive Auditing ; Audit
Phase > Phase Report
Source
code
Effect
Model
Effect Type v Effects
Unsafe Effects FFICall, FFIDecl, StaticExt, StaticMut, UnsafeCall, UnionField, RawPointer
System Effects std::fs, std::io, std::os, std::ffi, std::net, std::env, std::arch, std::path, std::mem, std::simd,
(SinkCall) std::panic, std::process, std::backtrace, std::intrinsics, libc, winapi
High-order Effects FnPtrCreation, ClosureCreation

UCDAVIS

Big Table

e List of crates
e Tools results analysis
e First sheet -> Rust analyzers

UCDAVIS 9

Let's take a poll

UCDAVIS

Limitations

Tool v Limitation v Detall v
Miri API Support No support for hardware APIs, filesystems, FFI, network

Warnings Shows some vulnerabilities as warnings
Rudra Compiler Version Uses rustc 1.58.0, not supported by many crates

Parsing Errors Fails to parse Cargo.toml for most crates (does not support “*")
Cargo-Scan False Positive Outputs all side effects, so lot's of false positives

Macros Does not support Macros.

UCDAVIS

Data appropriation

Rudra and Rust Version Mismatch

2024-06-03 06:38:28.467686 |INFO | [rudra-progress] Running cargo rudra
2024-06-03 06:38:34.266699 |INFO | [rudra-progress] Running rudra for target lib:1lz4-sys

package “cc v1.0.98° cannot be built because it requires rustc 1.63 or newer, while the currently active rustc version is 1.58.0-nightly
2024-06-03 06:38:43.235907 |ERROR| [rudra-progress] Finished with non-zero exit code

Solution?

UCDAVIS

Data appropriation

Rudra and Rust Version Mismatch

2024-06-03 06:38:28.467686 |INFO | [rudra—-progress] Running cargo rudra
2024-06-03 06:38:34.266699 |INFO | [rudra-progress] Running rudra for target lib:1z4-sys

: package "cc v1.0.98° cannot be built because it requires rustc 1.63 or newer, while the currently active rustc version is 1.58.0-nightly
2024-06-03 06:38:43.235907 |ERROR| [rudra-progress] Finished with non-zero exit code

Solution

2024-06-03 06:39:54.568213 |INFO | [rudra-progress] Running cargo rudra

2024-06-03 06:39:59.702995 |INFO | [rudra-progress] Running rudra for target lib:1lz4-sys

warning: use of deprecated type alias “gcc::Config : gcc::Config has been renamed to gcc::Build
build.rs:6:29

let mut compiler = gcc::Config::new();

AAAAAA

note: ‘#[warn(deprecated)]’ on by default

warning: use of deprecated associated function “gcc::Build::new : crate has been renamed to “cc’, the “gcc’ name is not maintained
build.rs:6:37

let mut compiler = gcc::Config::new();

PV VN

UCDAVIS 13

Execution Time

Average Time Comparison by Tool

10

£ [=)] @

Average Time (seconds)

N

Rudra Cargo-Scan Miri
Tool

UCDAVIS

Execution Time - Deeper Dive

Time Comparison by Crate and Tool

60 Tool
—e— Rudra
50 —e— Cargo-Scan
Miri
5 40
C
o
0
a 30
(0]
.f_:: 20 t
0. o o L]
10 . >/°\ : / \ / y —-—’—"'/ \./ -
® \.\ * .::____——-n\:/ o\./.\./
5 ~a
N < ~N > Q S Q >) Q y O > »
R o A o o (7
\,Q’\ &,QQ ZQ@’ AD'-\’ ‘,sb é,Q \\,-Q &> Q.\“ ‘\9’-\’ 00(" bx“’ (99'-” Y
2 o < & < > > > < S & 2 > Q
‘d’b & e & \4_? & & & L & g R © &
&8 D7 & 2 Y & S S o’ 2 Q
A @ L2 S =) 2 & o &
o < ?
o
o
¢
Crates

UCDAVIS

Memory Consumption

Average Memory Comparison by Tool

400

300

200

Average Memory (MB)

100

Rudra Cargo-Scan Miri
Tool

UCDAVIS

Memory Consumption - Deeper Dive

Memory Comparison by Crate and Tool

A Tool
700 —e— Rudra
—e— Cargo-Scan
600 Miri
B
@ 500 T ¢
= o, °
~ \/\/ I —— /

2 400 B .
g ®
K
g 300
200
100
0
% o o N % N Q
Q'\’L Qg’b Q@;\’ o o0 o° D o > o o%x N Q’b\, fL"'")‘)
< § & y X & A N o & %
(2 O N < o K O & 2 N Q
d«b & oy @Q} *_9 $ & & & & & R © o
& ad > &’ 6‘6 ® < oy & 2 A
? @ @ P) & (\’b(\ ‘_)(} &
P
O
¢
Crates

UCDAVIS

Discussion

Leads to

Vulnerability

UCDAVIS

Thank You

Do not trust any code you download from
internet (including LLMs)

UCDAVIS

Poll Result

UCDAVIS

¥ 5 Level of the Project

Motivation

Crates & Tool Selection

Comparison of Tools

O U ﬂ | ﬂ e Limitations

Some Problems and Solutions

Runtime and Memory Consumption Analysis

Discussion

UCDAVIS

Motivation

High+, impacting stable
([Ru St Security-related assert

e Why Rust?

Other Use-after-free

Other memory unsafety

UCDAVIS

5-Levels of Research Project

Research area: PL

Research subarea: Software security, Software reliability

Research topic: Security in Rust Ecosystem

Research problem: Are Rust libraries a threat for Rust codes security and
robustness

e Research solution: Evaluate the proficiency of Rust analyzers

UCDAVIS

Motivation

e Rust

e Code written in Rust guarantees:
o Runtime performance of traditional system languages like C/C++
o Memory Safety
m No Dangling Pointers
m No Garbage Collector
m No Use after free or out of bounds
o Type Safety

e Rust allows certain operations using “unsafe” keyword
e Rust compiler cannot guarantee safety in “unsafe” blocks

UCDAVIS

Rust Compiler

Package @——> Parsing - Type Checking » Analysis - Codegen

I
Rudra .
HIR - Code Structure MIR - Code Semantics lib/bin
Unsafe blocks «— Dataflow
Reports
Checks unsafe data handling Checks data types usage across threads
Unsafe Dataflow Send/Sync Variance
Checker Checker
Reports

Precision Filter (p = high/med/low)

