
In Rust We Trust?
A Closer Look to the Safety of Rust

Crates

Muhammad Hassnain
Parnian Kamran

Final Project of ECS 289C
Spring 2024

2

Outline

 Motivation

Crates & Tool Selection

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis suscipit in tellus ac
bibendum. Sed congue lacus vitae tellus finibus, eu faucibus nisi ullamcorper.

 Comparison of Tools

Limitations

 Some Problems and Solutions

Runtime and Memory Consumption Analysis

 Discussion

Motivation

● Rust?

3

Not this ❌ This ✅

Motivation

●

4

Crates Selection

● Rust Sec Database
○ Critical (20 crates)
○ High (10 crates)

● Safe (10 crates)
○ Identify false

positives

5

Miri: Interpreter for Rust Mid-level Representation

6

Source code AST
Abstract Syntax Tree

HIR
High-level intermediate

Representation

Parse Simplify

Machine Code
MIR

Mid-level intermediate
Representation

LLVM
Low--level intermediate

Representation

Translate

Lower

Magic

Execution

CPUMiri

Reference: https://solson.me/miri-slides.pdf

https://solson.me/miri-slides.pdf

Rudra

7

Package Parsing Analysis Codegen

Rust Compiler

Type Checking

Rudra

Dataflow

Precision Filter (p = high/med/low)

HIR - Code Structure

Unsafe blocks

MIR - Code Semantics

Unsafe Dataflow
Checker

Send/Sync Variance
Checker

Checks unsafe data handling Checks data types usage across threads

lib/bin

Reports

Reports

Cargo-Scan

8

User
configurations

Source
code

Analysis
Phase

Effect
Model

Call-graph with effects

Interactive Auditing
Phase

Audit
Report

Big Table

9

● List of crates
● Tools results analysis
● First sheet -> Rust analyzers

Let’s take a poll

10

Limitations

11

Data appropriation

Rudra and Rust Version Mismatch

12

Solution?

Data appropriation

Rudra and Rust Version Mismatch

13

Solution

Execution Time

14

Execution Time - Deeper Dive

15

Memory Consumption

16

Memory Consumption - Deeper Dive

17

Discussion

18

Thank You

19

Do not trust any code you download from
internet (including LLMs)

Poll Result

20

21

Outline

 Motivation

Crates & Tool Selection

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis suscipit in tellus ac
bibendum. Sed congue lacus vitae tellus finibus, eu faucibus nisi ullamcorper.

 5 Level of the Project

 Comparison of Tools

Limitations

 Some Problems and Solutions

Runtime and Memory Consumption Analysis

 Discussion

Motivation

● Rust
● Why Rust?

22

5-Levels of Research Project

● Research area: PL
● Research subarea: Software security, Software reliability
● Research topic: Security in Rust Ecosystem
● Research problem: Are Rust libraries a threat for Rust codes security and

robustness
● Research solution: Evaluate the proficiency of Rust analyzers

23

Motivation

● Rust
● Code written in Rust guarantees:

○ Runtime performance of traditional system languages like C/C++
○ Memory Safety

■ No Dangling Pointers
■ No Garbage Collector
■ No Use after free or out of bounds

○ Type Safety
● Rust allows certain operations using “unsafe” keyword
● Rust compiler cannot guarantee safety in “unsafe” blocks

24

25

Package Parsing Analysis Codegen

Rust Compiler

Type Checking

Rudra

Dataflow

Precision Filter (p = high/med/low)

HIR - Code Structure

Unsafe blocks

MIR - Code Semantics

Unsafe Dataflow
Checker

Send/Sync Variance
Checker

Checks unsafe data handling Checks data types usage across threads

lib/bin

Reports

Reports

