Counterexamples

Muhammad Hassnain
mhassnain@ucdavis.edu
University of California, Davis
USA

Abstract

The Rust programming language is a prominent candidate for a
C and C++ replacement in the memory-safe era. However, Rust’s
safety guarantees do not in general extend to arbitrary third-party
code. The main purpose of this short paper is to point out that
this is true even entirely within safe Rust — which we illustrate
through a series of counterexamples. To complement our examples,
we present initial experimental results to investigate: do existing
program analysis and program verification tools detect or mitigate
these risks? Are these attack patterns realizable via input to publicly
exposed functions in real-world Rust libraries? And to what extent
do existing supply chain attacks in Rust leverage similar attacks?
All of our examples and associated data are available as an open
source repository on GitHub. We hope this paper will inspire future
work on rethinking safety in Rust - especially, to go beyond the
safe/unsafe distinction and harden Rust against a stronger threat
model of attacks that can be used in the wild.

Keywords

Rust, memory safety, software security, software supply chain, em-
pirical analysis

ACM Reference Format:

Muhammad Hassnain and Caleb Stanford. 2024. Counterexamples in Safe
Rust. In 39th IEEE/ACM International Conference on Automated Software
Engineering Workshops (ASEW °24), October 27-November 1, 2024, Sacra-
mento, CA, USA. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/
3691621.3694943

1 Introduction

Security vulnerabilities in C and C++ software are often a result of
memory safety violations [38]. As a result, organizations (including
the US white house [55] and Consumer Reports [16]) are encouraging
the adoption of memory-safe languages like Rust. Rust provides a
safe subset (checked by the compiler) and an unsafe subset (roughly,
where compiler checks are disabled), and as long as code is written
within the safe part of the language, promises that the compiled
code will be memory safe.

Unfortunately, even within safe Rust, it is possible to violate this
guarantee. An illustrative example can be found in Figure 1. On
Linux systems, there is a special path, /proc/self/mem (equiva-
lently, /proc/<pid>/mem where <pid> is the process ID), which
allows a process to read or write to its own memory space. Reads

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ASEW °24, October 27-November 1, 2024, Sacramento, CA, USA

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1249-4/24/10

https://doi.org/10.1145/3691621.3694943

28 oo uome wn

in Safe Rust

Caleb Stanford
cdstanford@ucdavis.edu
University of California, Davis
USA

pub fn write_to_memory(x: *const i32, value: usize) -> Result<()> {
let mut file = OpenOptions::new().write(true).open("/proc/self/mem")?;

// Seek to the desired memory address
file.seek(std::io::SeekFrom::Start(x as u64))?;

// Write the data to the specified memory address
file.write_all(&value.to_ne_bytes())?;

0k(0O)

Figure 1: Function to modify arbitrary memory in safe Rust,
using the Linux-specific path /proc/self/mem.

and writes to the file are unguarded, as filesystem interfaces like
std::io::Write and std::io::Seek are marked safe by the stan-
dard library. By invoking .write_all, a programmer can indirectly
violate memory safety at runtime (unbeknownst to the Rust com-
piler) by overwriting its own process memory.

We are not the first to observe this problem. For example, in June
2022, documentation was added to the Unix portion of the standard
library (std: :o0s::unix: :io) to explain that /proc/self/mem is
out-of-scope for Rust’s safety guarantees [40]. As the documenta-
tion states: “Rust’s safety guarantees only cover what the program
itself can do, and not what entities outside the program can do to
it” Similar attacks are also known in the broader context of (intra-
process) memory isolation, e.g. [9]. Nonetheless, the existence of
counterexamples like the code in Figure 1 provides an important
challenge to the research community. As we describe in the re-
lated work (Section 4), many existing academic studies of Rust
focus on the problem of understanding and mitigating unsafe code,
for example through empirical analysis [2, 37], memory sandbox-
ing [6, 29], formal semantics [21, 22, 59], static analysis [4, 28], or
program verification [3, 14, 15, 26].1 Typically, these techniques do
not consider interaction with the operating system as in Figure 1.

This paper makes two main contributions. First, in Section 2, we
identify five major code patterns, which we call attack patterns, for
when safe Rust code can violate memory safety:

(1) Accessing the filesystem;

(2) Executing commands;

(3) Exploiting unsoundness in the Rust compiler;

(4) Modifying configuration at build-time; and

(5) Modifying configuration through environment variables.
For each of these patterns, we give one or more self-contained
counterexamples which violate memory safety in safe Rust using
the pattern. Our examples draw from prior work and existing Git
issues, and the patterns we identify are also related to the standard
library patterns considered by Cargo Scan [36, 62], a Rust auditing

!Not all formal verification tools for Rust support unsafe, though there is significant
interest in extending them to do so (e.g., RefinedRust [14]).

https://doi.org/10.1145/3691621.3694943
https://doi.org/10.1145/3691621.3694943
https://doi.org/10.1145/3691621.3694943

ASEW ’24, October 27-November 1, 2024, Sacramento, CA, USA

tool which we used in our evaluation. All of our examples are
available as an open source repository on GitHub.?

Second, in Section 3, we provide an initial experimental inves-
tigation on the implications of these patterns for the real-world
Rust ecosystem. First, we study the behavior of existing program
analysis and verification tools on our attack patterns. We find that
current tools have limited awareness of our counterexamples (i.e.,
they may either ignore them or consider the code unsupported).
Second, we manually investigate whether our patterns are realiz-
able via inputs to public functions in real-world Rust libraries. We
find a moderate number of real instances, particularly command
execution and environment variable manipulation. Third, we man-
ually investigate whether our patterns are similar to documented
vulnerabilities in RustSec, finding some similarities, particularly for
command execution.

Following the main sections, we survey related work (Section 4)
and conclude with a discussion (Section 5).

2 Attack Patterns

In this section, we identify five distinct attack patterns — filesys-
tem access, command execution, compiler unsoundness, build-time
effects, and environment variables — that represent diverse ways
in which safe Rust code can violate memory safety.? These pat-
terns were chosen for their coverage of possible attack vectors, and
they encompass both direct interactions with the operating sys-
tem (e.g., filesystem access, command execution) and more subtle
forms of influence (e.g., compiler unsoundness, build-time effects).
The selection is also motivated by the prevalence of these patterns
in real-world codebases (as covered in Section 3). For each attack
pattern, we provide one or more concrete examples.

2.1 Filesystem Access

The first attack pattern we identify is filesystem access (i.e, attack on
memory safety). When file paths are improperly handled or there is
insufficient sanitization, the integrity of Rust’s safety mechanisms
can be compromised by modifying core Rust compiler or process-
specific files.

For instance, consider the Linux special file /proc/self/mem,
which maps to the memory of the current process. This allows direct
access to the process’s address space, typically used for debugging
and low-level operations. As mentioned in the introduction and
demonstrated in Figure 1, the /proc/self/mem file can be exploited
to update memory stored at a specific location.

This technique can be further leveraged to perform out-of-bounds
(OOB) reads and writes to a vector or slice. Figure 2 demonstrates
the exploitation of /proc/self/mem to achieve OOB read and write
operations. In safe Rust, array accesses are verified to be within
bounds at runtime. For example, a vector in Rust consists of a
pointer to a buffer, the length of the buffer, and its capacity. Rust’s
compiler enforces bounds checking to maintain safety. However,
Figure 2 illustrates how /proc/self/mem can be used to bypass
these checks. By first writing to an arbitrary memory location (in-
dex) and then adjusting the vector’s capacity to index + 1. This

https://github.com/DavisPL/rust-counterexamples
3As noted in the introduction, we use the term attack pattern to refer specifically to
violations of memory safety; other attacks are out of scope for the present paper.

Muhammad Hassnain and Caleb Stanford

fn write_oob(vector: &Vec<i32>, index: usize, element: i32) {

// Get the pointer to the index location
let buffer_ptr = vector.as_ptr();
let ind = buffer_ptr.wrapping_add(index);

// Open the /proc/self/mem file for writing
let mut file = OpenOptions::new()
.write(true)
.open("/proc/self/mem")
.unwrap();

// Seek to the memory address of index
file.seek(std::io::SeekFrom::Start(ind as u64)).unwrap();

// Write the provided element into the calculated index position
file.write_all(&element.to_ne_bytes()).unwrap();

// Resize the vector to read the updated memory

let vec_ptr: *const usize = vector as *const Vec<i32> as *const usize;
let capacity_ptr: *const usize = vec_ptr.wrapping_add(2);
file.seek(std::io::SeekFrom::Start(capacity_ptr as u64)).unwrap();

let num = index + 1;

file.write_all(&num.to_ne_bytes()).unwrap();

// Print the updated vector element
println! ("I have {:?}", vector[index]);
}
Figure 2: Function to read/write out-of-bounds in safe Rust,

using the Linux-specific path /proc/self/mem.

manipulation allows reads from an arbitrary index into the vector
or slice, bypassing the usual bounds checking.

2.2 Command Execution

The second attack pattern we identify is command execution. Be-
cause command execution allows executing arbitrary programs, it
can enable an attacker to indirectly modify critical process data or
compiler-related files.

For example, consider the use of the GDB debugger, a powerful
tool capable of inspecting and manipulating the memory of running
processes. Figure 3 illustrates an out-of-bounds write achieved
through command execution on a Linux system with GDB installed.
Although this technique requires sudo privileges, it is dangerous
because it allows direct manipulation of memory locations that
are supposed to be protected. The code starts by spawning a new
GDB process, which is attached to the current process using the
—-pid argument. On line 15, the set command is used to update the
value stored at the given address. After modifying the memory, the
detach command detaches GDB from the process. Finally, the quit
command terminates the GDB session.

2.3 Compiler Unsoundness

The third attack pattern we identify involves compiler unsoundness,
where bugs in the compiler can lead to unexpected behavior or
vulnerabilities in the compiled code. In Rust, compiler unsoundness
can be used to violate memory safety by creating conditions that
lead to undefined behavior.

For instance, Figure 4 demonstrates a bug in which it was possible
to create undefined behavior by improperly extending a lifetime
to static [45]. Lifetimes in Rust define the scope during which
a reference is valid; static is only correct when a reference is
valid for the entire duration of the program. In Rust 1.77.0, this bug
allowed the inner scope to expire while the outer pointer remained.
This resulted in a dangling pointer which could be used to access
invalid memory, leading to undefined behavior. The bug was closed

https://github.com/DavisPL/rust-counterexamples

Counterexamples in Safe Rust

pub fn write_to_memory<T: std::fmt::Display>(x: *const T, value: T) -> Result<()>
= {
let pid = std::process::id();
let address = x as usize;
let mut child = Command::new("gdb")
.arg("--pid").arg(pid.to_string())
.stdin(Stdio: :piped())
.stdout(Stdio: :piped())
.spawn()?;
{
// Scope for the mutable borrow of stdin
let stdin = child.stdin.as_mut().ok_or_else(]|
< io::Error::new(io::ErrorKind::Other, "Failed to open GDB stdin"))?;
let mut writer = BufWriter::new(stdin);

// Instructs GDB to set the memory at 'address' to 'value'
writeln!(writer, "set *((int #*)0x{:x}) = {}", address, value)?;
writeln!(writer, "detach")?;
writeln!(writer, "quit")?;
writer.flush()?;
}
// Wait for the child process to exit
child.wait()?;
println!("Value updated successfully");
0k(())
3
Figure 3: Function to modify arbitrary memory in safe Rust

by using the GNU Debugger (GDB). This example requires
sudo privileges.

type Static<'a> = &'static &'a ();

trait Extend<'a> {
fn extend(self, _: &'a str) -> &'static str;

}

impl<'a> Extend<'a> for Static<'a> {
fn extend(self, s: &'a str) -> &'static str {
s

}
3
fn boom<'a>(arg: Static<'a>) -> impl Extend<'a> {
arg
3
fn main() {
let y = boom(&&()).extend(&String: : from("temporary”));
println! ("{}", y); //dangling reference
}

Figure 4: Example of lifetime extension exploiting a bug in
Rust 1.77, causing undefined behavior.

as completed on March 6, 2024, and was no longer present in Rust
1.78.0.

In a similar example on nightly Rust (Figure 5), there was a
bug that allowed a variable’s lifetime to be improperly extended,
creating a dangling pointer by extending the local lifetime of s to
static, which signifies the entire program’s duration. This creates
a dangling pointer, as the memory associated with s is freed when
drop(s) is called, yet the slice remains accessible; accessing it leads
to undefined behavior. The bug was patched on January 22, 2024,
and is no longer present as of Rust 1.82.0 [44].

These examples illustrate how compiler unsoundness can lead
to serious vulnerabilities in Rust by compromising memory safety.
While these specific soundness bugs have been fixed, 86 open sound-
ness bugs still exist in the Rust compiler as of August 2024 [42].
These issues are not limited to lifetimes: for example, one [46]
identifies that std: :process: :exit is not thread-safe, causing a
segmentation fault. Other bugs include miscompilations [41, 43]
and value truncation [47].

ASEW ’24, October 27-November 1, 2024, Sacramento, CA, USA

#![feature(arbitrary_self_types)]
trait Static<'a> {
fn proof(self: *const Self, s: &'a str) -> &'static str;

}

fn bad_cast<'a>(x: *const dyn Static<'static>) -> *const dyn Static<'a> {
X as

}

impl Static<'static> for () {
fn proof(self: *const Self, s:
s

&'static str) -> &'static str {

}
}

fn extend_lifetime(s: &str) -> &'static str {
bad_cast(&()).proof(s)

}
fn main() {

let s = String::from("Hello World");

let slice = extend_lifetime(&s);

println!("Now it exists: {slice}");

drop(s);

println!("Now it's gone: {slice}") //use-after-free
}

Figure 5: Example of lifetime extension exploiting a bug in
nightly Rust, causing undefined behavior.

2.4 Build-time Effects

Our fourth attack pattern is build-time effects. In Rust, code can
execute at build-time via procedural macros and build.rs scripts,
which can package third-party binaries or include custom build
instructions. Since code executed at build-time can run arbitrary
commands and access files, it can violate Rust’s safety guarantees.
For example, build.rs can be used to perform a filesystem attack
that overwrites files related to the Rust compiler itself.

Figure 6 demonstrates an example of this attack pattern. In this
scenario, a seemingly benign library builds a wrapper around the
Rust compiler on the user’s system. Whenever the compiler is
called, the wrapper, which is located in the library’s build scripts,
makes modifications to a target code file, compiles it, runs the
resulting executable, and then reverts the file to its original state
while preserving file metadata such as timestamps. From the user’s
perspective, no changes are detected, but the Rust compiler has
been compromised.

This attack can be used to violate memory safety by, for exam-
ple, replacing the compiler with a version that bypasses essential
safety checks, such as borrow checking. This would allow code that
normally wouldn’t compile due to safety violations to be success-
fully built and executed, leading to potential vulnerabilities in the
resulting application.

2.5 Environment Variables

Our last attack pattern is about environment variables. In some
cases, modifying environment variables can indirectly bypass Rust’s
safety guarantees. For example, altering the PATH environment
variable to prioritize a malicious binary instead of a legitimate one.
In Figure 7, the main function modifies the PATH environment
variable to include a directory /tmp/malicious_bin that contains
malicious binaries. When the 1s command is executed, the system
finds the malicious 1s binary in /tmp/malicious_bin and executes
it. Since the malicious binary can run arbitrary code, it can violate
memory safety in the original process by, for example, injecting
code that manipulates the memory of the running Rust program.

% N v oA W

ASEW ’24, October 27-November 1, 2024, Sacramento, CA, USA

fn main() -> std::io::Result<()> {
// Locate Cargo
let cargo_path = match locate_cargo_bin() {
Some(path) => path,

None => {
eprintln!("Failed to locate cargo binary");
exit(1);

}

i H
let cargo_dir = cargo_path.parent().unwrap();
let new_cargo_path = cargo_dir.join(".compiler/cargo");
if new_cargo_path.parent().unwrap().exists(){
return 0k(());
} //if we have modified the compiler, don't do it again

// Create the wrapper file
let mut file = OpenOptions::new().append(true)
.create(true).open("cargo.rs").unwrap();

let rust_code = format!(r#"
[Insert Wrapper Code Logic Here]
"#, &new_cargo_path.to_str().unwrap());

writeln!(file, "{}", rust_code).unwrap()?;

// Compile the wrapper and delete the file
Command: :new("rustc")
.arg("cargo.rs")
.stdout(Stdio::null()) // Suppress stdout
.stderr(Stdio::null()) // Suppress stderr
.status()?;

fs::remove_file("cargo.rs").unwrap()?;

// Move the wrapper to the compiler location
fs::create_dir_all(&new_cargo_path.parent().unwrap())?;
/] ...

fs::rename(script_file_name, &script_path).unwrap()?;

Ok

Figure 6: Excerpt from a build.rs that crates a wrapper
around Cargo and replaces the Rust compiler.

fn main() {
nv::set_var("PATH", "/tmp/malicious_bin:".to_owned() +

< &env::var("PATH").unwrap());

// This will run the malicious “1s’ if it exists in /tmp/malicious_bin
let output = Command::new("ls")
.output()
.expect("Failed to execute command");
}
Figure 7: Code using the PATH environment variable to run

an arbitrary executable.

3 Evaluation
Our questions for evaluation are as follows:

e Q1: Are the identified attack patterns detected and/or mit-
igated by existing Rust verification and program analysis
tools? Are they considered out of scope?

o Q2: How frequently is code matching one or more of these
attack patterns reachable (directly or indirectly) via publicly
exposed functions within real Rust crates?

o Q3: How frequently does code matching one or more of these
attack patterns appear in documented Rust CVEs?

3.1 Behavior of Existing Tools (Q1)

To answer Q1, we tested our examples with a collection of existing
Rust program analysis tools: Miri [54], Rudra [4] and a selection of
Rust formal verification tools: Verus [15], Prusti [3], and Flux [26].

Muhammad Hassnain and Caleb Stanford

Miri is an interpreter for Rust’s mid-level intermediate representa-
tion, which catches undefined behavior during execution. Rudra
identifies memory safety issues within Rust code through static
analysis. Prusti, Verus, and Flux are verification tools that utilize
formal methods to prove the correctness of Rust programs; we
include these tools because we are interested in the question of
whether this correctness extends to code which violates memory
safety, or whether these present a limitation for are outside the
guarantees of current verifiers. We did not run the examples with
sandboxing tools such as TRust [6], XRust [29], and Sandcrust [24],
or with other static analysis tools such as MIRChecker [28] and
MIRAI [11].

In our experimental setup, Miri was used with rustc version
1.76.0-nightly. For Prusti we used the VSCode extension [57].
For Verus, both the web version [58] and the local installation were
used from early 2024. Rudra was installed locally. For Flux, the web
version [13] was used. We define the following symbols to evaluate
the effectiveness of tools in capturing attack patterns, as shown in
Table 1:

e /: the tool successfully detects the attack pattern and iden-
tifies the issue.

e X: the tool fails to detect the attack and either accepts the
code or classifies it as safe.

e ~: the tool either provides ambiguous results or flags the
code as potentially unsafe.

e -: We were unable to run the tool on the example due to
limitations of our setup.

Most ~s are because of the presence of an unsupported function. For
example, Flux does not support dereferencing of a pointer. Similarly,
Prusti does not support raw addresses of expressions and casts from
references.

Conclusion: Some existing tools (e.g., Miri) correctly identify
some of our attacks. Overall, the results suggest that current tools
have limited awareness of attack patterns that rely on external
interactions with the operating system.

3.2 Prevalence in Real-World Code (Q2)

To answer Q2, we selected 500 of the most frequently downloaded
crates on crates. io and 500 randomly chosen crates. The most
frequently downloaded crates were obtained using the crates.io
API, with a parameter to sort by downloads. The random crates
were selected by fetching 20 crates per page without sorting, using
random page indices until we accumulated 500 unique crates.

For each crate, we obtained a list of all side effects using Cargo
Scan [36, 62],* a tool currently under development for auditing
Rust crates by identifying standard library patterns similar to the
ones in this paper (filesystem access, network access, command
execution, etc.). We used the -bin scan option and wrote a custom
parser to read the CSV file output. We then painstakingly reviewed
the side effects to identify matches with our attack patterns which
can be triggered using an argument as input to a publicly marked
(pub) function. We focused on side effects related to std: : process,
std::env, and std: : io because these are most closely related to
our attack patterns. In total, we analyzed 1903 files from the top

“https://github.com/PLSysSec/cargo-scan

https://github.com/PLSysSec/cargo-scan

aos v

Counterexamples in Safe Rust

ASEW ’24, October 27-November 1, 2024, Sacramento, CA, USA

Code Example CWE [32] Attack Pattern Tool Analysis
@ @
s & =
3 -g E @ S
¢ 5§ 2 3 2
S % g & “
T 2 5 5 3
g = " ; g
2 g 3 5 g
17 o= e =) .
S E o L = » = <
s 8 B % £ 5 : i 5 3
= o o a = = > & = &
/proc/self/mem-1 (Figure 1) CWE-123 v ~ ~ ~ X X
/proc/self/mem-2 (Figure 2) CWE-125,787,119,124 v ~ X ~ ~ X
GDB sudo (Figure 3) CWE-123 v X = = o X
Dangling Lifetime 1 (Figure 4) CWE-416,825 v v ~ ~ v v
Dangling Lifetime 2 (Figure 5) CWE-416,825 v v ~ v ~ v
Cargo Wrapper (Figure 6) CWE-426 v v 4 X X X X X
Path 1s (Figure 7) CWE-426 v 4 ~ X X X X
Trait Upcasting CWE-704,476,843 v v ~ ~ ~ X
Large Array Initialization CWE-665 4 X X ~ ~ X

Table 1: Evaluation of existing tools on the counterexamples described in the paper and two additional examples. The table
includes the corresponding CWEs, attack patterns, and output from existing verification and analysis tools.

pub fn from_command(command: &mut Command) -> Result<Self, Error> {
// Get rustc's verbose version
let output = try!(command
.args(&["--version", "--verbose"])
.output()
.map_err(error::from_io));
}
Figure 8: Example of command execution in the wild: inputs

to the command function in autocfg-1.3.0 can cause arbi-
trary code execution.

500 crates and 2920 files from the random 500 crates. The results
are shown in Table 2.

One interesting example is the function from_command in the
crate autocfg (Figure 8). The purpose of this function is to find
the version of the Rust compiler installed on the system. However,
the function is implemented as a public function which takes a
command as an argument. If the input to this function is untrusted,
then it may be possible use this function to perform a command
execution exploit.

A similar example in the top 500 crates is from
pkg_config-0.3.0. The functions get_variable and run
are used as a pair. The run function, which can execute arbitrary
commands, is not public, whereas the get_variable function is
public. The get_variable function passes arguments to the run
function, meaning there exists an input to get_variable that can
cause an arbitrary command to be executed. Figure 9 shows an
excerpt from both functions.

Another notable example is the create_shim function in
bvm-0.0.20 (Figure 10). This function is designed to create an
executable that the crate subsequently utilizes. The function oper-
ates as follows: On line 2, it determines the file path for the shim
script. On line 5, it writes a shim script to this path, configuring it to

pub fn get_variable(package: &str, variable: &str) -> Result<String, Error> {
let arg = format!("--variable={}", variable);
let cfg = Config::new();
let out = cfg.run(package, &[&argl)?;
Ok(str::from_utf8(&out).unwrap().trim_end().to_owned())

}

fn run(&self, name: &str, args: &[&str]) -> Result<Vec<u8>, Error> {
VA
let mut cmd = self.command(exe, name, args);
/...
}
Figure 9: Example of command execution in the wild: the

get_variable function in pkg_config-1.3.0 can pass arbi-
trary commands to the hidden run function.

resolve the executable path and set up the necessary environment.
On line 11, it changes the file’s permissions to make the script exe-
cutable. Given that this function is public, it is possible to provide
an input that inserts arbitrary text into the shim script, which will
later be executed.

Conclusion: Some of our attack patterns are prevalent in real-
world Rust codebases. Command execution and environment vari-
able manipulation are the most frequently observed patterns, present
in both highly-download and random crates.

3.3 Prevalence in Rust CVEs (Q3)

Finally, to answer Q3, we analyzed the crates that appeared on Rust-
Sec [17], a database of security advisories filed against Rust crates.
We began by creating a parser to scrape crate data from RustSec en-
tries on crates. io. Some crates have affected and patched versions
mentioned in their metadata, which helped us decide which ver-
sion of the crate to request from the crates.io APL If no patched
version was available, we selected the latest version; otherwise,

® N o U AW =

11
12
13
14
15
16
17
18
19

ASEW ’24, October 27-November 1, 2024, Sacramento, CA, USA

Muhammad Hassnain and Caleb Stanford

Attack Pattern Top 500 Crates Random 500 Crates RustSec rustdecimal [50]
Filesystem Access 3 4 1 v
Command Execution 16 13 2 v
Compiler Unsoundness 0 0 1°

Build-time Effects 0 0 1

Environment Variables 8 3 0 v

Table 2: Frequency of the attack patterns we consider on examples we were able to identify within the top 500 crates, a random
set of 500 crates, vulnerabilities listed in RustSec, and the rustdecimal supply-chain attack.

pub fn create_shim(
environment: &impl Environment,
binaries_cache_dir: &Path,
command_name: &CommandName,
) -> Result<(), ErrBox> {
let file_path = get_shim_path(binaries_cache_dir, command_name);
environment.write_file_text(
&file_path,
&format! (
r#"#!/bin/sh
exe_path=$(bvm resolve {})
"$exe_path" "$@""#,
command_name.as_str()
),
)7
Command: :new("chmod™)
.args(&["+x", file_path.to_string_lossy().to_string()1)
.output()?;
0k(())
3

Figure 10: Example of command execution in the wild: the
function to create a shim script in bvm-0.0.20 allows exe-
cution of arbitrary commands through the generated exe-
cutable.

we chose the most recent vulnerable version. The data was then
fed into Cargo Scan and subsequently into another scraper, which
extracted the functions with identified side effects. We scraped in-
formation about 435 crates from RustSec and manually analyzed
2009 files.

An example of a public function that can execute ar-
bitrary commands, as documented in RustSec is found in
grep-cli-0.1.5. This vulnerability is documented in Rust-
Sec as RUSTSEC-2021-0071 [49]. Figure 11 shows the code
snippet. The grep_cli::DecompressionReader::new func-
tion creates a new DecompressionReader by invoking the
DecompressionReaderBuilder: :new().build(path) method.
On Windows, in versions of grep-cli, some routines can execute
arbitrary executables. Windows process execution API considers
the current directory before other directories when resolving
relative binary names. Therefore, if grep-cli is used to read
decompressed files in an untrusted directory with that directory
as the current working directory (CWD), a malicious actor could
place a binary (e.g., gz.exe) in that directory. grep-cli would
then use the malicious actor’s version of gz.exe instead of the
system’s version. We classified this vulnerability as containing
the file system and command execution attack patterns. Another
interesting example is RUSTSEC-2022-0058 [51]. It uses build-time
effects to inject undefined behavior into stable, safe Rust.

In addition to the CVEs as described above, we also looked at
the rustdecimal typosquatting vulnerability [50]. It was used to

SUnsoundness in the standard library and not the compiler [48].

pub fn new<P: AsRef<Path>>(path: P) -> Result<DecompressionReader, CommandError>
= {
DecompressionReaderBuilder: :new().build(path)
3}
Figure 11: Example of command execution from the grep-cli

crate as reported in RustSec. The new function allows arbi-
trary command injection on Windows.

download and execute a binary payload when the publicly exposed
function Decimal: :new was called, based on the presence of an
environment variable. The attack patterns that are present in this
example are filesystem access, command execution and environment
variables as shown in the last column of Table 2.

Conclusion: Some of our attack patterns are reflected in docu-
mented vulnerabilities in RustSec.

4 Related Work

Unsafe Rust. Many researchers have looked at how unsafe Rust
is used in practice and to what extent it threatens the safety of the
Rust ecosystem [2, 10, 39]. Other authors have focused on specific
vulnerabilities, investigating Rust CVEs [60], yanked crates [27],
and semantic version violations [35]. However, these results do not
directly translate to counterexamples like the ones in this paper;
it is unclear whether (and to what extent) safety violations in safe
Rust are present in the Rust ecosystem and whether they can be
found automatically (as opposed to through manual inspection as
in Section 3).

Isolation in Rust. Sandboxing and isolation have been explored
in the context of Rust through tools like TRust [6], XRust [29], and
several others [1, 23, 24]. These tools typically focus on isolating
the memory that can be accessed within unsafe code blocks from
the rest of the system, for example using a combination of OS and
architecture-specific features and runtime checks. However, these
techniques do not help to constrain system side effects, and as
a result, Rust code can continue to pervasively invoke external
processes (std: : process) and invoke C/C++ code through the FFL

Language-level isolation. To truly prevent the counterexamples
in this paper, Rust might need something closer to the Safe Haskell
project [53], or other work on language-level isolation, e.g. Modula-
3 [7,19], E [31], and SHILL [33]. These papers pioneered the idea
that isolation can be achieved at the language level in a sufficiently
strongly typed language, with mechanisms such as object capa-
bilities. For example, in Safe Haskell, all I/O (including filesystem
access) must go through appropriate safe interfaces (the prototypi-
cal abstraction being a monad).

Counterexamples in Safe Rust

Supply chain security. Software supply chain security tools such
as Cargo Vet [34] can be used to manage audited Rust dependencies.
JFrog [8] and the RustSec database [17] are solutions to identify and
mitigate supply chain risks by tracking vulnerabilities. Cackle [25]
uses an access control list to determine whether specific API(s) are
used by any transitive dependencies of a crate. Cargo Scan [36, 62]
(an under-development tool) is more closely related, as it specifically
focuses on operating systems interaction through standard library
functions. While we are not aware of whether the counterexamples
in this paper have been directly used in real attacks, our evaluation
shows that similar code patterns show up in publicly exposed Rust
APIs and Rust CVEs.

Verification. One hope to prevent risks in safe Rust is to rely on
verification tools. Much recent effort has gone into formalizing the
semantics of Rust’s ownership mechanisms, including RustBelt [22],
Oxide [59], Stacked Borrows [21]; and into building dedicated ver-
ification tools like Smack [5], Kani [56], Prusti [3], Aeneas [18],
Verus [15], Hacspec [30], and Flux [26]. Some verifiers, including
RefinedRust [14], can verify some subset of unsafe code. While
labor-intensive, verification could be used to prevent misuse of
operating system-level functions. However, as we show in the eval-
uation, many of our examples are either overlooked or out-of-scope
for existing verifiers when run out-of-the-box.

Program analysis and testing. Program analysis tools like
MIRChecker [28], Rudra [4], and MIRI [54] can be used to identify
memory unsafety and undefined behavior in Rust programs. These
tools have found many real-world vulnerabilities. Fuzzing and syn-
thesis tools like RULF [20], SyRust [52], RPG [61], and RusSOL [12]
can synthesize fuzzing targets, unit tests, or Rust code matching a
logical specification. However, fuzzing and synthesis tools are un-
likely to generate tests triggering the attack patterns in this paper,
as they often require specific, pathological arguments which are
unlikely to be encountered on random or synthesized inputs.

5 Discussion

Rust’s safety guarantees can be bypassed even within safe Rust.
This fact is sometimes overlooked but carries significant security
implications. For instance, the attack patterns we identified can
be exploited even in codebases that enforce strict safety measures,
such as the #[forbid(unsafe)] directive. Code containing these
patterns is common across both widely-used and lesser-known Rust
crates. Although tools exist to identify undefined behavior in Rust
- e.g., via program analysis and verification — our patterns are often
overlooked or out of scope.

A key limitation of our study is that much of the evaluation was
conducted manually. Also, the tools we assessed do not represent
the full spectrum of available Rust analysis tools. Future work
could expand the range of tools evaluated, formalize our attack
patterns to align with program reasoning, and develop automated
detection methods. In particular, we hope to adapt existing tools
and techniques to recognize patterns involving /proc/self/mem
and other OS-specific features, or to prevent them entirely via static
analysis and verification.

ASEW ’24, October 27-November 1, 2024, Sacramento, CA, USA

Acknowledgments

This research was supported in part by the US National Science
Foundation under award CCF #2327338. The authors would like to
thank the anonymous reviewers for feedback. The authors would
also like to thank those on GitHub who raised the issues which
helped inspire some of the code snippets in this paper.

References

[1] Hussain MJ Almohri and David Evans. Fidelius charm: Isolating unsafe rust code.
In Proceedings of the Eighth ACM Conference on Data and Application Security
and Privacy, pages 248-255, 2018.

Vytautas Astrauskas, Christoph Matheja, Federico Poli, Peter Miiller, and Alexan-

der J Summers. How do programmers use unsafe rust? Proceedings of the ACM

on Programming Languages, 4(OOPSLA):1-27, 2020.

Vytautas Astrauskas, Peter Miiller, Federico Poli, and Alexander J Summers.

Leveraging Rust types for modular specification and verification. Proceedings of

the ACM on Programming Languages, 3(OOPSLA):1-30, 2019.

[4] Yechan Bae, Youngsuk Kim, Ammar Askar, Jungwon Lim, and Taesoo Kim. Rudra:

finding memory safety bugs in rust at the ecosystem scale. In Proceedings of the

ACM SIGOPS 28th Symposium on Operating Systems Principles, pages 84-99, 2021.

Abhiram Balasubramanian, Marek S Baranowski, Anton Burtsev, Aurojit Panda,

Zvonimir Rakamari¢, and Leonid Ryzhyk. System programming in rust: Beyond

safety. In Proceedings of the 16th Workshop on Hot Topics in Operating Systems,

pages 156-161, 2017.

[6] Inyoung Bang, Martin Kayondo, HyunGon Moon, and Yunheung Paek. TRust:
A compilation framework for in-process isolation to protect safe Rust against
untrusted code. In 32nd USENIX Security Symposium (USENIX Security 23), pages
6947-6964, Anaheim, CA, August 2023. USENIX Association.

[7] Brian N Bershad, Stefan Savage, Przemyslaw Pardyak, Emin Giin Sirer, Marc E
Fiuczynski, David Becker, Craig Chambers, and Susan Eggers. Extensibility safety
and performance in the spin operating system. In Proceedings of the fifteenth
ACM symposium on Operating systems principles, pages 267-283, 1995.

[8] Stephen Chin. Closing the Supply Chain Security Loop with Rust @ Rust Nation

UK | JFrog — jfrog.com. https:/jfrog.com/community/rust/closing-the-supply-

chain-security-loop-with-rust-and-pyrsia/. [Accessed 2023-12].

R Joseph Connor, Tyler McDaniel, Jared M Smith, and Max Schuchard. PKU

pitfalls: Attacks on PKU-based memory isolation systems. In 29th USENIX Security

Symposium (USENIX Security 20), pages 1409-1426, 2020.

Ana Nora Evans, Bradford Campbell, and Mary Lou Soffa. Is Rust used safely

by software developers? In Proceedings of the ACM/IEEE 42nd International

Conference on Software Engineering, pages 246-257, 2020.

Meta Experimental. GitHub - facebookexperimental/MIRAL: Rust mid-level IR

Abstract Interpreter — github.com. https://github.com/facebookexperimental/

MIRAL 2024. [Accessed 15-08-2024].

[12] Jonas Fiala, Shachar Itzhaky, Peter Miiller, Nadia Polikarpova, and Ilya Sergey.

Leveraging rust types for program synthesis. Proceedings of the ACM on Program-

ming Languages, 7(PLDI):1414-1437, 2023.

Flux developers. Flux Playground — flux.programming.systems. https://

flux.programming.systems/. [Accessed 03-08-2024].

Lennard Giher, Michael Sammler, Ralf Jung, Robbert Krebbers, and Derek Dreyer.

RefinedRust: A type system for high-assurance verification of Rust programs.

Proceedings of the ACM on Programming Languages, 8(PLDI):1115-1139, 2024.

GitHub. verus-lang/verus: Verified Rust for low-level systems code — github.com.

https://github.com/verus-lang/verus, 2022. [Accessed 2023-2-03].

Yael Grauer et al. Future of memory safety: Challenges and recommendations.

Security Planner, page 16, January 2023.

[17] Secure Code Working Group. Rust Security Advisory Database — rustsec.org.
https://rustsec.org/. [Accessed 2023-11-13].

[18] Son Ho and Jonathan Protzenko. Aeneas: Rust verification by functional trans-
lation. Proceedings of the ACM on Programming Languages, 6(ICFP):711-741,
2022.

[19] Wilson C Hsieh, Marc E Fiuczynski, Charles Garrett, Stefan Savage, David Becker,

and Brian N Bershad. Language support for extensible operating systems. In

Proceedings of the Workshop on Compiler Support for System Software, pages

127-133, 1996.

Jianfeng Jiang, Hui Xu, and Yangfan Zhou. RULF: Rust library fuzzing via API

dependency graph traversal. In 2021 36th IEEE/ACM International Conference on

Automated Software Engineering (ASE), pages 581-592. IEEE, 2021.

Ralf Jung, Hoang-Hai Dang, Jeehoon Kang, and Derek Dreyer. Stacked borrows:

An aliasing model for Rust. Proc. ACM Program. Lang., 4(POPL), dec 2019.

Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. RustBelt:

Securing the foundations of the Rust programming language. Proc. ACM Program.

Lang., 2(POPL), dec 2017.

[2

3

[5

—
o)

[10

[11

(13

=
&

[15

[16

[20

[21

[22

https://jfrog.com/community/rust/closing-the-supply-chain-security-loop-with-rust-and-pyrsia/
https://jfrog.com/community/rust/closing-the-supply-chain-security-loop-with-rust-and-pyrsia/
https://github.com/facebookexperimental/MIRAI
https://github.com/facebookexperimental/MIRAI
https://flux.programming.systems/
https://flux.programming.systems/
https://github.com/verus-lang/verus
https://rustsec.org/

ASEW ’24, October 27-November 1, 2024, Sacramento, CA, USA

[23]

[24]

[25]

[26

[27]

[28

[29

[30

[31]

[32

[33]

[34

[35]

[36

[37]

[38]

[39]

[40

[41]

[42

[43]

[44

[45

[46

Paul Kirth, Mitchel Dickerson, Stephen Crane, Per Larsen, Adrian Dabrowski,
David Gens, Yeoul Na, Stijn Volckaert, and Michael Franz. Pkru-safe: Automati-
cally locking down the heap between safe and unsafe languages. In Proceedings
of the Seventeenth European Conference on Computer Systems, EuroSys ’22, page
132-148, New York, NY, USA, 2022. Association for Computing Machinery.
Benjamin Lamowski, Carsten Weinhold, Adam Lackorzynski, and Hermann
Hértig. Sandcrust: Automatic sandboxing of unsafe components in Rust. In Pro-
ceedings of the 9th Workshop on Programming Languages and Operating Systems,
PLOS °17, page 51-57, New York, NY, USA, 2017. Association for Computing
Machinery.

David Lattimore. Making Rust supply chain attacks harder with Cackle — davidlat-
timore.github.io. https://davidlattimore.github.io/making-supply-chain-attacks-
harder.html. [Accessed 2023-12-06].

Nico Lehmann, Adam T Geller, Niki Vazou, and Ranjit Jhala. Flux: Liquid types
for rust. Proceedings of the ACM on Programming Languages, 7(PLDI):1533-1557,
2023.

Hao Li, Filipe R Cogo, and Cor-Paul Bezemer. An empirical study of yanked
releases in the Rust package registry. IEEE Transactions on Software Engineering,
49(1):437-449, 2022.

Zhuohua Li, Jincheng Wang, Mingshen Sun, and John CS Lui. MirChecker:
detecting bugs in Rust programs via static analysis. In Proceedings of the 2021
ACM SIGSAC conference on computer and communications security, pages 2183—
2196, 2021.

Peiming Liu, Gang Zhao, and Jeff Huang. Securing unsafe Rust programs with
XRust. In Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering, ICSE 20, page 234-245, New York, NY, USA, 2020. Association for
Computing Machinery.

Denis Merigoux, Franziskus Kiefer, and Karthikeyan Bhargavan. Hacspec: succinct,
executable, verifiable specifications for high-assurance cryptography embedded in
Rust. PhD thesis, Inria, 2021.

Mark Miller. Robust composition: Towards a uni ed approach to access control and
concurrency control. Johns Hopkins University, 2006.

Mitre corporation. CWE - Common Weakness Enumeration — cwe.mitre.org.
https://cwe.mitre.org/. [Accessed 15-08-2024].

Scott Moore, Christos Dimoulas, Dan King, and Stephen Chong. SHILL: A secure
shell scripting language. In 11th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 14), pages 183-199, 2014.

Mozilla. Cargo Vet — mozilla.github.io. https://mozilla.github.io/cargo-vet/.
[Accessed 2023-11-13].

Tomasz Nowak and Predrag Gruevski. Semver violations are common, better
tooling is the answer. https://predr.ag/blog/semver-violations-are-common-
better-tooling-is-the-answer/, 2023. [Accessed 2024-2-8].

UC Davis PL and UC San Diego PLSysSec. Cargo Scan: A tool for auditing Rust
crates — github.com. https://github.com/PLSysSec/cargo-scan, 2024. [Accessed
10-09-2024].

Natalie Popescu, Ziyang Xu, Sotiris Apostolakis, David I August, and Amit Levy.
Safer at any speed: automatic context-aware safety enhancement for Rust. Pro-
ceedings of the ACM on Programming Languages, 5(OOPSLA):1-23, 2021.
Chromium Project. Memory safety — chromium.org.
//www.chromium.org/Home/chromium-security/memory-safety/.
cessed 2023-11-08].

Bogin Qin, Yilun Chen, Zeming Yu, Linhai Song, and Yiying Zhang. Understand-
ing memory and thread safety practices and issues in real-world rust programs.
In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 763-779, 2020.

Rust language team. Document Rust’s stance on ‘/proc/self/mem’ by sunfishcode
- Pull Request #97837 - rust-lang/rust — github.com. https://github.com/rust-
lang/rust/pull/97837. [Accessed 02-08-2024].

Rust language team. Floating point comparisons are miscompiled for signaling
nan inputs on aarch64 - issue #110174 - rust-lang/rust — github.com. https:
//github.com/rust-lang/rust/issues/110174. [Accessed 16-Aug-2024].

Rust language team. Issues - rust-lang/rust — github.com. https://github.com/rust-
lang/rust/issues?q=is%3Aissue+is%3Aopen+label%3Al-unsound. [Accessed 03-
08-2024].

Rust language team. Miscompilation of a program projecting field of an extern
type - issue #127336 - rust-lang/rust — github.com. https://github.com/rust-
lang/rust/issues/127336. [Accessed 16-08-2024].

Rust language team. Pointer casts allow switching trait parameters for trait
objects, which can be unsound with raw pointers as receiver types under ‘fea-
ture(arbitrary_self_types) - Issue 120217 - rust-lang/rust — github.com. https:
//github.com/rust-lang/rust/issues/120217. [Accessed 27-07-2024].

Rust language team. RPIT hidden types can be ill-formed - Issue 114728 - rust-
lang/rust — github.com. https://github.com/rust-lang/rust/issues/114728. [Ac-
cessed 31-07-2024].

Rust language team. ‘std:process::exit’ is not thread-safe - Issue #126600 - rust-
lang/rust — github.com. https://github.com/rust-lang/rust/issues/126600. [Ac-
cessed 16-08-2024].

https:
[Ac-

[47

[48]

[49]

(50]

(52

(53]

[54

[56

[57]

(58]

[59]

[61

[62

Muhammad Hassnain and Caleb Stanford

Rust language team. x86-64 assembler silently truncates 64-bit address - Issue
#118223 - rust-lang/rust — github.com. https://github.com/rust-lang/rust/issues/
118223. [Accessed 16-08-2024].

Rust Project Developers. RUSTSEC-2020-0105: abi_stable: Update unsound
DrainFilter and RString:retain ; RustSec Advisory Database — rustsec.org.
https://rustsec.org/advisories/RUSTSEC-2020-0105.html. [Accessed 02-08-2024].
Rust Project Developers. RUSTSEC-2021-0071: grep-cli: ‘grep-cli‘ may run ar-
bitrary executables on Windows; RustSec Advisory Database — rustsec.org.
https://rustsec.org/advisories/RUSTSEC-2021-0071.html. [Accessed 02-08-2024].
Rust Project Developers. RUSTSEC-2022-0042: rustdecimal: malicious crate
‘rustdecimal’ ; RustSec Advisory Database — rustsec.org. https://rustsec.org/
advisories/RUSTSEC-2022-0042.html. [Accessed 03-08-2024].

Rust Project Developers. RUSTSEC-2022-0058: inconceivable: Library exclusively
intended to inject UB into safe Rust. ; RustSec Advisory Database — rustsec.org.
https://rustsec.org/advisories/RUSTSEC-2022-0058.html. [Accessed 02-08-2024].
Yoshiki Takashima, Ruben Martins, Limin Jia, and Corina S Pasareanu. Syrust:
automatic testing of rust libraries with semantic-aware program synthesis. In
Proceedings of the 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation, pages 899-913, 2021.

David Terei, Simon Marlow, Simon Peyton Jones, and David Maziéres. Safe
haskell. ACM SIGPLAN Notices, 47, 09 2012.

the Rust team. GitHub - rust-lang/miri: An interpreter for Rust’s mid-level
intermediate representation — github.com. https://github.com/rust-lang/miri.
[Accessed 2023-12-06].

The White House whitehouse.gov Office of the National Cyber Di-
rector (ONCD). Press Release: Future Software Should Be Memory
Safe. https://www.whitehouse.gov/oncd/briefing-room/2024/02/26/press-
release-technical-report/, 2024. [Accessed 02-08-2024].

Alexa VanHattum, Daniel Schwartz-Narbonne, Nathan Chong, and Adrian Samp-
son. Verifying dynamic trait objects in Rust. In Proceedings of the 44th Interna-
tional Conference on Software Engineering: Software Engineering in Practice, pages
321-330, 2022.

Verus developers. Prusti Assistant - Visual Studio Marketplace — market-
place.visualstudio.com. https://marketplace.visualstudio.com/items?itemName=
viper-admin.prusti-assistant. [Accessed 03-08-2024].

Verus developers. Verus Playground — play.verus-lang.org. https://play.verus-
lang.org/?version=stable&mode=basic&edition=2021. [Accessed 03-08-2024].
Aaron Weiss, Olek Gierczak, Daniel Patterson, and Amal Ahmed. Oxide: The
essence of rust. arXiv preprint arXiv:1903.00982, 2019.

Hui Xu, Zhuangbin Chen, Mingshen Sun, Yangfan Zhou, and Michael R Lyu.
Memory-safety challenge considered solved? an in-depth study with all Rust
CVEs. ACM Transactions on Software Engineering and Methodology (TOSEM),
31(1):1-25, 2021.

Zhiwu Xu, Bohao Wu, Cheng Wen, Bin Zhang, Shengchao Qin, and Mengda He.
RPG: Rust library fuzzing with pool-based fuzz target generation and generic
support. In Proceedings of the [IEEE/ACM 46th International Conference on Software
Engineering, pages 1-13, 2024.

Lydia Zoghbi, David Thien, Ranjit Jhala, Deian Stefan, and Caleb Stanford. Au-
diting Rust crates effectively. Unpublished draft, 2024.

https://davidlattimore.github.io/making-supply-chain-attacks-harder.html
https://davidlattimore.github.io/making-supply-chain-attacks-harder.html
https://cwe.mitre.org/
https://mozilla.github.io/cargo-vet/
https://predr.ag/blog/semver-violations-are-common-better-tooling-is-the-answer/
https://predr.ag/blog/semver-violations-are-common-better-tooling-is-the-answer/
https://github.com/PLSysSec/cargo-scan
https://www.chromium.org/Home/chromium-security/memory-safety/
https://www.chromium.org/Home/chromium-security/memory-safety/
https://github.com/rust-lang/rust/pull/97837
https://github.com/rust-lang/rust/pull/97837
https://github.com/rust-lang/rust/issues/110174
https://github.com/rust-lang/rust/issues/110174
https://github.com/rust-lang/rust/issues?q=is%3Aissue+is%3Aopen+label%3AI-unsound
https://github.com/rust-lang/rust/issues?q=is%3Aissue+is%3Aopen+label%3AI-unsound
https://github.com/rust-lang/rust/issues/127336
https://github.com/rust-lang/rust/issues/127336
https://github.com/rust-lang/rust/issues/120217
https://github.com/rust-lang/rust/issues/120217
https://github.com/rust-lang/rust/issues/114728
https://github.com/rust-lang/rust/issues/126600
https://github.com/rust-lang/rust/issues/118223
https://github.com/rust-lang/rust/issues/118223
https://rustsec.org/advisories/RUSTSEC-2020-0105.html
https://rustsec.org/advisories/RUSTSEC-2021-0071.html
https://rustsec.org/advisories/RUSTSEC-2022-0042.html
https://rustsec.org/advisories/RUSTSEC-2022-0042.html
https://rustsec.org/advisories/RUSTSEC-2022-0058.html
https://github.com/rust-lang/miri
https://www.whitehouse.gov/oncd/briefing-room/2024/02/26/press-release-technical-report/
https://www.whitehouse.gov/oncd/briefing-room/2024/02/26/press-release-technical-report/
https://marketplace.visualstudio.com/items?itemName=viper-admin.prusti-assistant
https://marketplace.visualstudio.com/items?itemName=viper-admin.prusti-assistant
https://play.verus-lang.org/?version=stable&mode=basic&edition=2021
https://play.verus-lang.org/?version=stable&mode=basic&edition=2021

	Abstract
	1 Introduction
	2 Attack Patterns
	2.1 Filesystem Access
	2.2 Command Execution
	2.3 Compiler Unsoundness
	2.4 Build-time Effects
	2.5 Environment Variables

	3 Evaluation
	3.1 Behavior of Existing Tools (Q1)
	3.2 Prevalence in Real-World Code (Q2)
	3.3 Prevalence in Rust CVEs (Q3)

	4 Related Work
	5 Discussion
	Acknowledgments
	References

